An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization

نویسندگان

  • Xingguo Li
  • Tuo Zhao
  • Raman Arora
  • Han Liu
  • Mingyi Hong
چکیده

The cyclic block coordinate descent-type (CBCD-type) methods have shown remarkable computational performance for solving strongly convex minimization problems. Typical applications includes many popular statistical machine learning methods such as elastic-net regression, ridge penalized logistic regression, and sparse additive regression. Existing optimization literature has shown that the CBCD-type methods attain iteration complexity of O(p · log(1/ )), where is a pre-specified accuracy of the objective value, and p is the number of blocks. However, such iteration complexity explicitly depends on p, and therefore is at least p times worse than those of gradient descent methods. To bridge this theoretical gap, we propose an improved convergence analysis for the CBCD-type methods. In particular, we first show that for a family of quadratic minimization problems, the iteration complexity of the CBCD-type methods matches that of the GD methods in term of dependency on p (up to a log p factor). Thus our complexity bounds are sharper than the existing bounds by at least a factor of p/ log p. We also provide a lower bound to confirm that our improved complexity bounds are tight (up to a log p factor) if the largest and smallest eigenvalues of the Hessian matrix do not scale with p. Finally, we generalize our analysis to other strongly convex minimization problems beyond quadratic ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization

The cyclic block coordinate descent-type (CBCD-type) methods, which performs iterative updates for a few coordinates (a block) simultaneously throughout the procedure, have shown remarkable computational performance for solving strongly convex minimization problems. Typical applications include many popular statistical machine learning methods such as elastic-net regression, ridge penalized log...

متن کامل

On the Complexity Analysis of Randomized Block-Coordinate Descent Methods

In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in [11, 15] for minimizing the sum of a smooth convex function and a blockseparable convex function, and derive improved bounds on their convergence rates. In particular, we extend Nesterov’s technique developed in [11] for analyzing the RBCD method for minimizing a smooth convex function over a block-separ...

متن کامل

On the Convergence of Block Coordinate Descent Type Methods

In this paper we study smooth convex programming problems where the decision variables vector is split into several blocks of variables. We analyze the block coordinate gradient projection method in which each iteration consists of performing a gradient projection step with respect to a certain block taken in a cyclic order. Global sublinear rate of convergence of this method is established and...

متن کامل

Inexact block coordinate descent methods with application to the nonnegative matrix factorization

This work is concerned with the cyclic block coordinate descent method, or nonlinear Gauss-Seidel method, where the solution of an optimization problem is achieved by partitioning the variables in blocks and successively minimizing with respect to each block. The properties of the objective function that guarantee the convergence of such alternating scheme have been widely investigated in the l...

متن کامل

Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate Descent

We show that the Sparse Kaczmarz method is a particular instance of the coordinate gradient method applied to an unconstrained dual problem corresponding to a regularized `1-minimization problem subject to linear constraints. Based on this observation and recent theoretical work concerning the convergence analysis and corresponding convergence rates for the randomized block coordinate gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016